Source code for cbx.objectives

"""
objectives
==========

This module implements obejective functions to test the performance of consesus 
algorithms.

"""

import numpy as np
from scipy.stats import multivariate_normal
from .utils.objective_handling import cbx_objective
    
#%%

[docs] class three_hump_camel(cbx_objective): """Three-hump camel function Three-hump camel function is a multimodal function with a global minimum at :math:`(0,0)`. The function is defined as .. math:: f(x,y) = 2x^2 - 1.05x^4 + \\frac{1}{6}x^6 + xy + y^2 Examples -------- >>> import numpy as np >>> from cbx.objectives import three_hump_camel >>> x = np.array([[1,2], [3,4], [5,6.]]) >>> obj = three_hump_camel() >>> obj(x) array([ 7.11666667, 82.45 , 2063.91666667]) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import three_hump_camel fig = plt.figure(figsize=(15,5)) x_min = -2. x_max = 2. y_min = -2. y_max = 2. f = three_hump_camel() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.plot(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', markersize=5) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') """ def __init__(self): super().__init__() self.minima = np.array([[0,0]]) def apply(self, x): return 2*x[..., 0]**2 - 1.05 * x[..., 0]**4 + (1/6) * x[..., 0]**6 + x[..., 0]*x[..., 1] + x[..., 1]**2
[docs] class McCormick(cbx_objective): r"""McCormick's function McCormick's function is a multimodal function with two global minima at :math:`(-0.54719,-1.54719)` and :math:`(1.54719,0.54719)`. The function is defined as .. math:: f(x,y) = \sin(x+y) + (x-y)^2 - 1.5x + 2.5y + 1 See `McCormick's function <https://en.wikipedia.org/wiki/Test_functions_for_optimization>`_. Examples -------- >>> import numpy as np >>> from cbx.objectives import McCormick >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = McCormick() >>> f(x) array([5.64112001, 8.1569866 , 8.50000979]) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import McCormick fig = plt.figure(figsize=(15,5)) x_min = -2. x_max = 3. y_min = -3 y_max = 4 f = McCormick() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.plot(-0.54719,-1.54719, color='orange', marker='x', markersize=10) ax0.plot(1.54719, 0.54719, color='orange', marker='x', markersize=10) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') """ def apply(self, x): return np.sin(x[..., 0] + x[...,1]) + (x[...,0] - x[...,1])**2 - 1.5 * x[...,0] + 2.5*x[...,1] + 1
[docs] class Rosenbrock(cbx_objective): """Rosenbrock's function Rosenbrock's function is a multimodal function with a global minimum at :math:`(1,1)`. The function is defined as .. math:: f(x,y) = (a-x)^2 + b(y-x^2)^2 See `Rosenbrock's function <https://en.wikipedia.org/wiki/Rosenbrock_function>`_. Parameters ---------- a : float, optional The first parameter of the function. The default is 1.0. b : float, optional The second parameter of the function. The default is 100.0. Examples -------- >>> import numpy as np >>> from cbx.objectives import Rosenbrock >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = Rosenbrock() >>> f(x) array([ 0., 76., 76.]) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import Rosenbrock fig = plt.figure(figsize=(15,5)) x_min = -2. x_max = 2. y_min = -1. y_max = 3. f = Rosenbrock() num_pts_landscape = 150 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.plot(1,1, color='orange', marker='x', markersize=10) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') """ def __init__(self, a=1., b=100.): super().__init__() self.a = a self.b = b def apply(self, x): return (self.a - x[..., 0])**2 + self.b* (x[..., 1] - x[..., 0]**2)**2
[docs] class Himmelblau(cbx_objective): """Himmelblau's function Himmelblau's function is a multimodal function with. The function is defined as .. math:: f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2 See `Himmelblau's function <https://en.wikipedia.org/wiki/Himmelblau%27s_function>`_. Parameters ---------- factor : float, optional The factor by which the input is multiplied. The default is 1.0. Global minima ------------- - :math:`f(x,y) = 0` at :math:`(x,y) = (3,2)` - :math:`f(x,y) = 0` at :math:`(x,y) = (-2.805118,3.131312)` - :math:`f(x,y) = 0` at :math:`(x,y) = (-3.779310,-3.283186)` - :math:`f(x,y) = 0` at :math:`(x,y) = (3.584428,-1.848126)` Examples -------- >>> import numpy as np >>> from cbx.objectives import Himmelblau >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = Himmelblau() >>> f(x) array([ 68., 148., 1556.]) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import Himmelblau fig = plt.figure(figsize=(15,5)) x_min = -5. x_max = 5. y_min = -5. y_max = 5. f = Himmelblau() num_pts_landscape = 250 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.scatter(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', s=15) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') """ def __init__(self, factor=1.0): super().__init__() self.factor = factor self.minima = np.array([[3,2], [-2.805118,3.131312], [-3.779310,-3.283186], [3.584428,-1.848126]]) def apply(self, x): x = self.factor*x return (x[...,0]**2 + x[...,1] - 11)**2 + (x[...,0] + x[...,1]**2 - 7)**2
[docs] class Rastrigin(cbx_objective): r"""Rastrigin's function Rastrigin's function is a multimodal function with a global minima at :math:`(0,0)`. The function is originally defined on :math:`\mathbb{R}^2` as .. math:: f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2. See `Rastrigin's function <https://en.wikipedia.org/wiki/Rastrigin_function>`_. For our case we employ a shifted version on :math:`\mathbb{R}^d`, where the global minimum is at :math:`(b)` and we additonally employ a offset :math:`c`, .. math:: \tilde{f}(x,y) = \frac{1}{n} \sum_{i=1}^n \left[ (x_i - b)^2 - 10 \cos(2 \pi (x_i - b)) + 10 \right] + c. Parameters ---------- b : float, optional The first parameter of the function. The default is 0.0. c : float, optional The second parameter of the function. The default is 0.0. Examples -------- >>> import numpy as np >>> from cbx.objectives import Rastrigin >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = Rastrigin() >>> f(x) array([ 68., 148., 1556.]) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import Rastrigin fig = plt.figure(figsize=(15,5)) x_min = -2. x_max = 2. y_min = -2. y_max = 2. f = Rastrigin() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.plot(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', markersize=5) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') """ def __init__(self, b=0., c=0., A=10.): super().__init__() self.b = b self.c = c self.A = A self.minima = np.array([[self.b, self.b]]) def apply(self, x): return ( (self.A * x.shape[-1]) * ((x - self.b)**2 - self.A * np.cos(2*np.pi*(x - self.b)) + 10).sum(-1) + self.c )
[docs] class Rastrigin_multimodal(cbx_objective): r"""Multimodal Rastrigin's function Let :math:`V` be the Rastrigin's function. Then the multimodal Rastrigin's function is defined as .. math:: f(x) = \prod_{i=1}^n V(\alpha_i (x - z_i)) Parameters ---------- alpha : list of floats, optional The factor for each multiplicative term. The default is [1.0]. z : numpy array, optional The shift vectors in each term. The default is np.array([[0]]). Examples -------- >>> import numpy as np >>> from cbx.objectives import Rastrigin_multimodal >>> x = np.array([[1,2], [3,4], [5,6]]) >>> alpha = [2., 3.] >>> z = np.array([[2,3], [4,5]]) >>> f = Rastrigin_multimodal(alpha = alpha, z = z) >>> f(x) array([324., 36., 324.]) See Also -------- Rastrigin : The Rastrigin's function Ackley_multimodal : The multimodal Ackley's function """ def __init__(self, alpha = None, z = None): super().__init__() self.alpha = alpha if alpha else [1.] self.z = z if z else np.zeros((len(self.alpha), 1)) self.V = Rastrigin() self.minima = self.z self.num_terms = len(self.alpha) def apply(self, x): y = np.ones(x.shape[0:-1] ) for i in range(self.num_terms): y *= self.V(self.alpha[i] * (x - self.z[i,:])) return y
[docs] class Ackley(cbx_objective): r"""Ackley's function Ackley's function is a multimodal function with a global minima at :math:`(0,0)`. The function is originally defined on :math:`\mathbb{R}^2` as .. math:: f(x,y) = -20 \exp \left( -b \sqrt{\frac{1}{2} (x^2 + y^2)} \right) - \exp \left( \frac{1}{2} (\cos(c x) + \cos(c y)) \right) + a + e See `Ackley's function <https://en.wikipedia.org/wiki/Ackley_function>`_. Parameters ---------- a : float, optional The default is 20.0. b : float, optional The default is 0.2. c : float, optional The default is 2*np.pi. Examples -------- >>> import numpy as np >>> from cbx.objectives import Ackley >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = Ackley() >>> f(x) array([ 68., 148., 1556.]) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import Ackley fig = plt.figure(figsize=(15,5)) x_min = -2. x_max = 2. y_min = -2. y_max = 2. f = Ackley() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.plot(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', markersize=5) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') """ def __init__(self, A=20., b=0.2, c=2*np.pi, minimum = None): super().__init__() self.A=A self.b=b self.c=c self.minima = 0 if minimum is None else minimum def apply(self, x): d = x.shape[-1] x = x - self.minima arg1 = -self.b * np.sqrt(1/d) * np.linalg.norm(x,axis=-1) arg2 = (1/d) * np.sum(np.cos(self.c * x), axis=-1) return -self.A * np.exp(arg1) - np.exp(arg2) + self.A + np.e
[docs] class Ackley_multimodal(cbx_objective): r"""Multimodal Ackley's function Let :math:`V` be the Ackley's function. Then the multimodal Ackley's function is defined as .. math:: f(x) = \prod_{i=1}^n V(\alpha_i (x - z_i)) Parameters ---------- alpha : list of floats, optional The factor for each multiplicative term. The default is [1.0]. z : numpy array, optional The shift vectors in each term. The default is np.array([[0]]). Examples -------- >>> import numpy as np >>> from cbx.objectives import Ackley_multimodal >>> x = np.array([[1,2], [3,4], [5,6]]) >>> alpha = [2., 3.] >>> z = np.array([[2,3], [4,5]]) >>> f = Ackley_multimodal(alpha = alpha, z = z) >>> f(x) array([110.07368964, 59.49910362, 126.11721609]) See Also -------- Ackley Rasrigin_multimodal """ def __init__(self, alpha = None, z = None): super().__init__() self.alpha = alpha if alpha else [1.] self.z = z if z else np.zeros((len(self.alpha), 1)) self.V = Ackley() self.minima = self.z self.num_terms = len(self.alpha) def apply(self, x): y = np.ones(x.shape[0:-1] ) for i in range(self.num_terms): y *= self.V(self.alpha[i] * (x - self.z[i,:])) return y
# def test2d(x): # return np.cos(x.T[0])+np.sin(x.T[1]) class accelerated_sinus(cbx_objective): def __init__(self, a=1.0): super().__init__() self.a = a def apply(self, x): x = np.linalg.norm(x, axis=-1) return np.sin((self.a * x)/(1+x*x)).squeeze() + 1 class nd_sinus(cbx_objective): def __init__(self, a=1.0): super().__init__() self.a = a def apply(self, x): x = 0.3*x z = 1/x.shape[-1] * np.linalg.norm(x,axis=-1)**2 res = (np.sin(z) + 1) * (x[...,0]**4 - x[...,0]**2 + 1) return res.squeeze() class p_4th_order(cbx_objective): def __init__(self,): super().__init__() def apply(self, x): n = x res = (np.sum(n**4,axis=-1) - np.sum(n**2,axis=-1) + 1) return res.squeeze() class Quadratic(cbx_objective): def __init__(self, alpha=1.0): super().__init__() self.alpha = alpha def apply(self, x): return np.linalg.norm(self.alpha*x, axis=-1)**2 class Banana(cbx_objective): def __init__(self, m=0, sigma=0.5, sigma_prior=2): super().__init__() self.m = m self.sigma = sigma self.sigma_prior = sigma_prior def apply(self, x): G = ((x[...,1]-1)**2-(x[...,0]-2.5) -1) Phi = 0.5/(self.sigma**2)*(G - self.m)**2 return Phi + 0.5/(self.sigma_prior**2)*np.linalg.norm(x,axis=-1)**2 class Bimodal(cbx_objective): def __init__(self, a=None, b=None): super().__init__() self.a = a if a else [1., 1.5] self.b = b if b else [-1.2, -0.7] def apply(self, x): a = self.a b = self.b ret = -np.log(np.exp(-((x[...,0]-a[0])**2 + (x[...,1]-a[1])**2/0.2)) \ + 0.5*np.exp( -(x[...,0]-b[0])**2/8 - (x[...,1]-b[1])**2/0.5 )) return ret class Unimodal(cbx_objective): def __init__(self, a = None): super().__init__() self.a = a if a else [-1.2, -0.7] def apply(self, x): a = self.a ret = -np.log(0.5*np.exp( -(x[...,0]-a[0])**2/8 - (x[...,1]-a[1])**2/0.5 )) return ret class Multimodal(cbx_objective): def __init__(self, means=None, covs=None): super().__init__() self.means = [np.zeros((2,))] if means is None else means self.covs = [np.eye(2)] if covs is None else covs self.mns = [multivariate_normal(mean=m, cov=c) for m,c in zip(self.means, self.covs)] def apply(self, x): res = 0 for mn in self.mns: res += mn.pdf(x) return -np.log(res)
[docs] class Bukin6(cbx_objective): r"""Bukin's function 6 Bunkin's sixth function is a function with many local minima and one global minimum. It is defined as .. math:: f(x,y) = 100\sqrt{|y - 0.01x^2|} + 0.01|x + 10|, see, e.g., [1]_. Parameters ---------- None Global minima ------------- - :math:`f(x,y) = 0` at :math:`(x,y) = (0,0)` Examples -------- >>> import numpy as np >>> from cbx.objectives import Bukin6 >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = Bukin6() >>> f(x) array([ 68., 148., 1556.]) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import Bukin6 fig = plt.figure(figsize=(15,5)) x_min = -2. x_max = 2. y_min = -2. y_max = 2. f = Bukin6() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.plot(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', markersize=5) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') References ---------- .. [1] https://www.sfu.ca/~ssurjano/bukin6.html """ def __init__(self,): super().__init__() self.minima = np.array([[0, 0]]) def apply(self, x): return 100 * np.sqrt(np.abs(x[...,1] - 0.01 * x[...,0]**2)) + 0.01 * np.abs(x[...,0] + 10)
[docs] class cross_in_tray(cbx_objective): r"""Cross-In-Tray function The Cross-In-Tray function is a function with many local minima and one global minimum [1]_. It is defined as .. math:: f(x,y) = -0.0001 \left( \left| \sin(x) \sin(y) \exp \left( \left| 100 - \frac{\sqrt{x^2 + y^2}}{\pi} \right| \right) + 1 \right| + 1 \right)^0.1, see [1]_. Parameters ---------- None Global minima ------------- - :math:`f(x,y) = -2.06261` at :math:`(x,y) = (1.34941, 1.34941)` - :math:`f(x,y) = -2.06261` at :math:`(x,y) = (-1.34941, -1.34941)` - :math:`f(x,y) = -2.06261` at :math:`(x,y) = (1.34941, -1.34941)` - :math:`f(x,y) = -2.06261` at :math:`(x,y) = (-1.34941, 1.34941)` Examples -------- >>> import numpy as np >>> from cbx.objectives import cross_in_tray >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = cross_in_tray() >>> f(x) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import cross_in_tray fig = plt.figure(figsize=(15,5)) x_min = -2. x_max = 2. y_min = -2. y_max = 2. f = cross_in_tray() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.scatter(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', s=20) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') References ---------- .. [1] https://www.sfu.ca/~ssurjano/crossit.html """ def __init__(self): super().__init__() self.minima = np.array([[1.34941, 1.34941], [-1.34941, 1.34941], [1.34941, -1.34941], [-1.34941, -1.34941]]) def apply(self, x): return -0.0001 * (np.abs(np.sin(x[...,0]) * np.sin(x[...,1]) * np.exp(np.abs(100 - np.sqrt(x[...,0]**2 + x[...,1]**2)/np.pi))) + 1)**0.1
[docs] class Easom(cbx_objective): r"""Easom The Easom function is a function with many local minima and one global minimum [1]_ . It is defined as .. math:: f(x,y) = -\cos(x) \cos(y) \exp \left( -\left( x - \pi \right)^2 - \left( y - \pi \right)^2 \right). Parameters ---------- None Global minima ------------- - :math:`f(x,y) = -1` at :math:`(x,y) = (\pi, \pi)` Examples -------- >>> import numpy as np >>> from cbx.objectives import Easom >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = Easom() >>> f(x) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import Easom fig = plt.figure(figsize=(15,5)) x_min = 0 x_max = 2. * np.pi y_min = 0. y_max = 2. * np.pi f = Easom() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.plot(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', markersize=5) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') References ---------- .. [1] https://www.sfu.ca/~ssurjano/easom.html """ def __init__(self): super().__init__() self.minima = np.array([[np.pi, np.pi]]) def apply(self, x): return -np.cos(x[...,0]) * np.cos(x[...,1]) * np.exp(-((x[...,0] - np.pi)**2 + (x[...,1] - np.pi)**2))
[docs] class drop_wave(cbx_objective): r"""Drop Wave The Drop Wave function is a function with many local minima and one global minimum [1]_. It is defined as .. math:: f(x,y) = -\left( 1 + \cos(12 \sqrt{x^2 + y^2}) \right) \exp \left( -\frac{x^2 + y^2}{2(1 + 0.001(x^2 + y^2))} \right), see [1]_. Parameters ---------- None Global minima ------------- - :math:`f(x,y) = -1` at :math:`(x,y) = (0, 0)` Examples -------- >>> import numpy as np >>> from cbx.objectives import drop_wave >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = drop_wave() >>> f(x) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import drop_wave fig = plt.figure(figsize=(15,5)) x_min = -2. x_max = 2. y_min = -2. y_max = 2. f = drop_wave() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.plot(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', markersize=5) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') References ---------- .. [1] https://www.sfu.ca/~ssurjano/drop.html """ def __init__(self): super().__init__() self.minima = np.array([[0, 0]]) def apply(self, x): return -(1 + np.cos(12 * np.sqrt(x[...,0]**2 + x[...,1]**2))) * np.exp(-0.5 * (x[...,0]**2 + x[...,1]**2) / (1 + 0.001 * (x[...,0]**2 + x[...,1]**2)))
[docs] class Holder_table(cbx_objective): r"""Holder table The Holder table function is a function with many local minima and four global minima [1]_. It is defined as .. math:: f(x,y) = -\left| \sin(x) \cos(y) \exp \left( \left| 1 - \frac{\sqrt{x^2 + y^2}}{\pi} \right| \right) \right|, and its domain is :math:`[-10,10]^2`. Note, that this function can decrease further if the domain is enlarged. Parameters ---------- None Global minima ------------- - :math:`f(x,y) = -19.2085` at :math:`(x,y) = (8.05502, 9.66459)` - :math:`f(x,y) = -19.2085` at :math:`(x,y) = (-8.05502, 9.66459)` - :math:`f(x,y) = -19.2085` at :math:`(x,y) = (8.05502, -9.66459)` - :math:`f(x,y) = -19.2085` at :math:`(x,y) = (-8.05502, -9.66459)` Examples -------- >>> import numpy as np >>> from cbx.objectives import Holder_table >>> x = np.array([[1,2], [3,4], [5,6]]) >>> f = Holder_table() >>> f(x) Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import Holder_table fig = plt.figure(figsize=(15,5)) x_min = -10. x_max = 10. y_min = -10. y_max = 10. f = Holder_table() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.scatter(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', s=20) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') References ---------- .. [1] https://www.sfu.ca/~ssurjano/holdertable.html """ def __init__(self, factor=1., shift= 0): super().__init__() self.factor = factor self.shift = shift self.minima = np.array([[8.05502, 9.66459], [-8.05502, 9.66459], [8.05502, -9.66459], [-8.05502, -9.66459]]) def apply(self, x): x = (x - self.shift) * self.factor return -np.abs(np.sin(x[...,0]) * np.cos(x[...,1]) * np.exp(np.abs(1 - np.sqrt(x[...,0]**2 + x[...,1]**2) / np.pi)))
[docs] class snowflake(cbx_objective): r"""Snowflake The snowflake function is a function with many local minima and six global minima [1]_. Using polar coordinates, it is as .. math:: f(r, \phi) = \min\{f_0(r,\phi), f_1(r,\phi), f_2(r,\phi), 0.8\}, where for :math:`i\in\{0,1,2\}` we define .. math:: f_i(r,\phi) = r^8 - r^4 + \sqrt{\left|\cos\left(\phi + i\cdot \frac{\pi}{3}\right)\right|} \cdot r^{0.3}. This function was introduced to showcase the performance of the PolarCBO algorithm [2]_. Parameters ---------- alpha : float Scales the input. Default is .5 Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import snowflake fig = plt.figure(figsize=(15,5)) x_min = -2.5 x_max = 2.5 y_min = -2.5 y_max = 2.5 f = snowflake() num_pts_landscape = 100 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ, 20, cmap=cm.get_cmap('Blues')) ax0.contour(cs, colors='white', alpha=0.2) ax0.scatter(f.minima[:, 0], f.minima[:, 1], color='blue', marker='x', s=20) ax1.plot_surface(XX,YY,ZZ, cmap=cm.get_cmap('Blues')) ax0.set_title('Contour plot') ax1.set_title('Surface plot') References ---------- .. [1] https://github.com/TimRoith/polarcbo .. [2] Bungert, L., Roith, T., Wacker, P. (2022): Polarized consensus-based dynamics for optimization and sampling. arXiv:2211.05238 """ def __init__(self, alpha=.5): super().__init__() self.alpha = alpha self.minima_polar = np.array([[ 1/self.alpha * 0.5**(1/4), np.pi/2], [-1/self.alpha * 0.5**(1/4), np.pi/2], [ 1/self.alpha * 0.5**(1/4), np.pi/2 - np.pi/3], [-1/self.alpha * 0.5**(1/4), np.pi/2 - np.pi/3], [ 1/self.alpha * 0.5**(1/4), np.pi/2 - 2*np.pi/3], [-1/self.alpha * 0.5**(1/4), np.pi/2 - 2*np.pi/3]]) self.minima = np.zeros((self.minima_polar.shape)) self.minima[:, 0] = self.minima_polar[:, 0] * np.cos(self.minima_polar[:, 1]) self.minima[:, 1] = self.minima_polar[:, 0] * np.sin(self.minima_polar[:, 1]) def apply(self, x): x = self.alpha * x r = np.linalg.norm(x,axis=-1) phi = np.arctan2(x[...,1], x[...,0]) res = np.ones((x.shape[:-1])) for psi in [0, np.pi/3, np.pi*2/3]: g = r**8 - r**4 + np.abs(np.cos(phi+psi))**0.5*r**0.3 res = np.minimum(res, g) res = np.minimum(res, .8) return res
[docs] class eggholder(cbx_objective): r"""Eggholder The Eggholder function is a function with many local minima and one global minimum [1]_. It is defined as .. math:: f(x,y) = -(y+47)\cdot \sin\left(\sqrt{\left|y+x/2+47\right|}\right) - x\cdot \sin\left(\sqrt{\left|x-y-47\right|}\right). Parameters ---------- None Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import eggholder fig = plt.figure(figsize=(15,5)) x_min = -600 x_max = 600 y_min = x_min y_max = x_max f = eggholder() num_pts_landscape = 200 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ,30, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.scatter(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', s=30) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') References ---------- .. [1] https://www.sfu.ca/~ssurjano/egg.html """ def __init__(self): super().__init__() self.minima = np.array([[512, 404.2319]]) def apply(self, x): return -(x[...,1] + 47) * np.sin(np.sqrt(np.abs(x[...,1] + x[...,0]/2 + 47))) - x[...,0] * np.sin(np.sqrt(np.abs(x[...,0] - (x[...,1] + 47))))
[docs] class Michalewicz(cbx_objective): r"""Michalewicz Michalewicz function is a function with many local minima and one global minimum [1]_. It is defined as .. math:: f(x,y) = -\sum_{i=1}^d \sin(x_i)\cdot \left(\sin\left(\frac{i x_i^2}{\pi}\right)\right)^{2m}, where :math:`d` denotes the dimension and the parameter :math:`m` is ususally chosen as :math:`m=10`. Parameters ---------- None Visualization ------------- .. plot:: import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from cbx.objectives import Michalewicz fig = plt.figure(figsize=(15,5)) x_min = 0. x_max = 4. y_min = x_min y_max = x_max f = Michalewicz() num_pts_landscape = 200 xx = np.linspace(x_min, x_max, num_pts_landscape) yy = np.linspace(y_min, y_max, num_pts_landscape) XX, YY = np.meshgrid(xx,yy) XXYY = np.stack((XX.T,YY.T)).T Z = np.zeros((num_pts_landscape,num_pts_landscape, 2)) Z[:,:,0:2] = XXYY ZZ = f(Z) ax0 = fig.add_subplot(121) ax1 = fig.add_subplot(122, projection='3d') cs = ax0.contourf(XX,YY,ZZ,30, cmap=cm.jet) ax0.contour(cs, colors='orange', alpha=0.2) ax0.scatter(f.minima[:, 0], f.minima[:, 1], color='orange', marker='x', s=30) ax1.plot_surface(XX,YY,ZZ, cmap=cm.jet) ax0.set_title('Contour plot') ax1.set_title('Surface plot') References ---------- .. [1] https://www.sfu.ca/~ssurjano/michal.html """ def __init__(self, d=2, m=10): super().__init__() self.d = d self.m = m if d == 2: self.minima = np.array([[2.2029, 1.5708]]) else: self.minima = None def apply(self, x): arr_shape = np.ones(x.ndim, dtype=int) arr_shape[-1] = x.shape[-1] arr = np.arange(x.shape[-1]).reshape(arr_shape) + 1 return -np.sum(np.sin(x) * np.sin(arr * (x**2)/np.pi)**(2*self.m), axis=-1)